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Received 22 October 2007, in final form 23 January 2008
Published 19 February 2008
Online at stacks.iop.org/JPhysA/41/095001

Abstract
An ASEP with two species of particles and different hopping rates is considered
on a ring. Its integrability is proved, and the nested algebraic Bethe ansatz is
used to derive the Bethe equations for states with arbitrary numbers of particles
of each type, generalizing the results of Derrida and Evans [10]. We also
present formulae for the total velocity of particles of a given type and their
limit given the large size of the system and the finite densities of the particles.

PACS numbers: 05.40.−a, 02.30.Ik

1. Introduction

An idea which has proved to be quite useful in understanding the behavior of systems out of
equilibrium is to study solvable models. An example of such models, which has been given
a lot of attention for at last two decades, is the asymmetric simple exclusion process (ASEP)
[1]. It describes a driven lattice gas [2, 3] where particles can hop on adjacent sites with
asymmetric rates and hard core exclusion.

Different methods have been applied to study the ASEP, and each of them seems better
suited to study certain aspects of the problem. The matrix product ansatz for example has
been employed with success in determining the density profile of steady states, steady currents
or diffusion coefficients (for reviews see [4–6]). On the other hand other quantities like the
relaxation time are more easily dealt with by means of the Bethe ansatz [7, 8].

Actually in [9], Derrida and Lebowitz showed how a modification of the Bethe ansatz
of Gwa and Sphon [8] could be used to compute the full large deviation function of the time
averaged current for the ASEP with one species of particles.

Soon after Derrida and Evans [10] considered the problem with a second species of
particles, and thanks to a Bethe ansatz they were able, not only to reproduce known results
[11, 12] about the phase diagram of the steady current of a particle of second type, but also to
compute its diffusion coefficient and in principle all the higher cumulants.
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Multi-species generalizations of the ASEP have been considered in several papers
[13–17]. The fact that they are integrable is not at all obvious. The most natural integrable
generalizations of the single species have a hierarchical structure based on quotients of the
Hecke algebra, which ensure the integrability, as explained in [18].

On the other hand, in the ASEP with two kinds of particles and different rates, as
considered by Derrida and Evans, the hierarchy is partially spoiled precisely by the different
hopping rates, and to understand its integrability from a point of view of the Yang–Baxter
equation one cannot resort to the Hecke algebra commutation relations.

The proper definition of the model we are going to study goes as follows. We consider
a one-dimensional lattice with periodic boundary conditions (i.e. a ring). Each site can be
empty (indicated by 0), or occupied either by a particle of type 1 or by a particle of type 2.
The rules that govern the stochastic evolution of the system during an interval of time dt are
purely local on couples of neighboring sites and are given by

10 → 01 with rate 1

20 → 02 with rate α

12 → 21 with rate β.

Our first point in the present paper is to make manifest the integrability of the ASEP
with two species, by showing an R-matrix which solves the Yang–Baxter equation and gives,
through the usual procedure, the transition matrix of our problem. Once we have this we
employ the machinery of the algebraic Bethe ansatz (ABA) to derive the Bethe equations and
the eigenvalues of the transition matrix (see [19] for a review on ABA, and [20] for recent
application of ABA to the ASEP).

Since we have a number of species greater than one we are led to perform a nested Bethe
ansatz. In the case of an arbitrary number of species, but with hopping rates independent of
the types of particles the nested Bethe equations have already been derived in [21].

With the Bethe equations at our disposal we can tackle the problem of determining the
cumulants of the total velocity of particles of the a given type, or of joint cumulants, in the
presence of an arbitrary number of particles of each kind.

The exact formula for the average velocity of particles of the second type is given in terms
of certain contour integrals

Fα
N,M1,M2

=
[∮

1
+

∮
1/α

]
dy

2π

yN

(y − 1)M1(αy − 1)M2
, (1)

Fb
N,M1,M2

=
[∮

1
+

∮
1/α

]
dy

2π

yN

(y − 1)M1(1 − by)M2
. (2)

The formula for the total velocity of particles of species 2 reads

v2 = M2
Fα

N−2,M1,M2
Fb

N,M1+1,M2
− Fα

N,M1+1,M2
Fb

N−2,M1,M2

Fα
N−1,M1,M2

Fb
N,M1+1,M2

− Fα
N,M1+1,M2

Fb
N−1,M1,M2

, (3)

where b = 1 − β.
We also consider the limit of the large size of the system with finite nonzero densities of

particles. In this limit, one can evaluate the contour integrals by saddle point methods finding
for the limiting velocity

v2 = M2

(
1

y+
α

+
1

y−
b

− 1

)
, (4)
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where y+
α and y−

b can be expressed by a unique formula

y±
κ = κ + 1 − ρ1 − κρ2 ±

√
(κ + 1 − ρ1 − κρ2)2 − 4κ(1 − ρ1 − ρ2)

2κ(1 − ρ1 − ρ2)
, (5)

where we have to substitute respectively κ = α or κ = b.
The plan of the paper is the following. In section 2, we show the integrability of the

ASEP with generic rates by presenting an R-matrix which solves the Yang–Baxter equation
and generates the transition matrix of the ASEP. In the same section, we use the techniques
of the algebraic Bethe ansatz to diagonalize the transition matrix, arriving at a set of nested
Bethe equations. In section 3, we analyze the Bethe equations and derive the exact formula
for the total velocity of M2 particles of type 2 on a ring of size N and in the presence of M1

particles of kind 1, we comment on the derivation of the higher cumulants. The large-N limit
of the velocity is worked out in section 4 where we show that for nonzero densities of particles
of each type, its dependence on the parameters α, β and on the densities of the two species of
particles ρ1 and ρ2 is analytical. In appendix A, we sketch the derivation of the Bethe equations
for an ASEP with twisted boundary conditions, that we need for the derivation of the nested
equations. In appendix B, we study the integrability of models with higher number of particles
and arbitrary hopping rates.

2. Yang–Baxter for two species and different rates

In [10], Derrida and Evans have employed the coordinate Bethe ansatz to study the ASEP in
the presence of an impurity, which for us is nothing other than a second species of particles.

The fact that the problem can be solved by Bethe ansatz, as done in [10] for the case of a
single second type particle, means that it is integrable. Our first task is to understand better its
integrability showing the Yang–Baxter equation behind it.

The transition matrix of our system can be written in terms of matrices that encode the
local transition of particles. Let us define the basis of the local space of states as

|0〉 = empty ≡ particle of kind 0,

|1〉 = particle of kind 1,

|2〉 = particle of kind 2.

In the basis (|0〉, |1〉, |2〉)a ⊗ (|0〉, |1〉, |2〉)b we introduce the operators

E(10) = eν10 |0a, 1b〉〈1a, 0b| − |1a, 0b〉〈1a, 0b|;
E(20) = eν20 |0a, 2b〉〈2a, 0b| − |2a, 0b〉〈2a, 0b|;
E(12) = eν12 |2a, 1b〉〈1a, 2b| − |1a, 2b〉〈1a, 2b|.

(6)

The ASEP with two species is defined by the following equation for the probability of a
given configuration C

d

dt
Pt (C) =

∑
C′

M0,0,0(C, C′)Pt (C′). (7)

where

Mν10,ν20,ν12(C, C′) =
∑

i

(
E

(10)
i + αE

(20)
i + βE

(12)
i

)
. (8)

Since we are in the presence of several species of particles, we can introduce the relative
distances covered by particles after an initial time t = 0. By this we mean the distance Y ij

covered by all the particles of kind i with respect to particles of kind j . It increases of a unity
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each time a particle of kind i jumps to the right of a particle of kind j , and decreases of a
unity when the opposite happens. In our case we have three kind of particles 0, 1, 2, hence we
consider Y 10, Y 20, Y 12. The joint probability Pt(C, Y 10, Y 20, Y 12) of being in a configuration
C, and having Y

ij
t = Y ij satisfies an evolution equation which is better written in terms of a

generating function:

F
ν10,ν20,ν12
t (C) =

∑
Y 10,Y 20,Y 12

exp(ν10Y
10 + ν20Y

20 + ν12Y
12)Pt (C, Y 10, Y 20, Y 12). (9)

The evolution equation satisfied by F
ν10,ν20,ν12
t (C) is

d

dt
F

ν10,ν20,ν12
t (C) =

∑
C′

Mν10,ν20,ν12(C, C′)F ν10,ν20,ν12
t (C′). (10)

One obtains 〈exp(ν10Y
10
t + ν20Y

20
t + ν12Y

12
t )〉 summing F

ν10,ν20,ν12
t (C) over C; hence, its large

time behavior is determined by the largest eigenvalue λ(ν10, ν20, ν12) of the transition matrix:
Mν10,ν20,ν12(C, C′)〈

exp
(
ν10Y

10
t + ν20Y

20
t + ν12Y

12
t

)〉 ∼ exp(λ(ν10, ν20, ν12)t).

We find such an eigenvalue by employing the algebraic Bethe ansatz.
Our first step is to find an R-matrix which satisfies the Yang–Baxter equation, the inversion

relation and such that its derivative reduces to the linear combination of E(ij)’s matrices

E(10) + αE(20) + βE(12).

Once we have this, we construct the transfer matrix in the usual way as trace of products of
L-matrices, which are defined by La,b(x, y) = Pa,bRa,b(x, y) (where Pa,b is the permutation
operator, which exchanges the component of the tensor product), and we are assured that its
logarithmic derivative will be the desired

∑
i

(
E

(10)
i + αE

(20)
i + βE

(12)
i

)
.

We provide a solution of the Yang–Baxter equation

Ra,b(y, z)Rb,c(x, z)Ra,b(x, y) = Rb,c(x, y)Ra,b(x, z)Rb,c(y, z), (11)

of the form

R(x, y) = 1 + g10(x, y)E(10) + g20(x, y)E(20) + g12(x, y)E(12), (12)

where

g12(x, y) = 1 − 1 + β(e−y − 1)

1 + β(e−x − 1)
;

g10(x, y) = 1 − ex−y;
g20(x, y) = 1 − 1 + α(ex − 1)

1 + α(ey − 1)
.

(13)

We define the monodromy matrix of a system of size N as

Ta⊗H (x, �η) = La,aN
(x, ηN) · · · La,a2(x, η2)La,a1(x, η1). (14)

where La,b(x, y) = Pa,bRa,b(x, y), and Pa,b is the permutation operator, i.e. Pva ⊗ vb =
vb ⊗ va . The transfer matrix is given by

T (x, �η) = traTa⊗H (a, �η)

Thanks to the Yang–Baxter equation (11) we get

Ta⊗H (z, �y)Tb⊗H (x, �y)Ra,b(x, z) = Ra,b(x, z)Ta⊗H (x, �y)Tb⊗H (z, �y), (15)

4
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and, tracing over the auxiliary space, we obtain that the transfer matrices with different values
of the spectral parameter commute among themselves

[T (x, �η), T (x ′, �η)] = 0. (16)

The transition matrix of our system is obtained choosing ηi = 0, and taking the logarithmic
derivative of T (x, �η) at x = 0

Mν10,ν20,ν12(C, C′) = −T (0, �0)−1 dT (x, �0)

dx

∣∣∣
x=0

. (17)

We come now to the Yang–Baxter algebra, which can be easily read from equation (15).
Let us write the monodromy matrix as

Ta⊗H (x) =
⎛
⎝ A(x) B1(x) B2(x)

C1(x) D11(x) D12(x)

C2(x) D21(x) D22(x)

⎞
⎠ . (18)

The transfer matrix can then be written as

T (x) = A(x) + D11(x) + D22(x), (19)

where we have simplified the notation omitting �ζ which is fixed to be zero. In order to make
manifest the nested structure of the R-matrix, let us rewrite it as

R(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 (1 − ex−y) eν10 0 0 0 0 0
0 0 1 0 0 0

(
1 − 1+α(ex−1)

1+α(ey−1)

)
eν20 0 0

0 0 0 ex−y 0 0 0 0 0

0 0 0 0 R
(1)
11,11 R

(1)
11,12 0 R

(1)
11,21 R

(1)
11,22

0 0 0 0 R
(1)
12,11 R

(1)
12,12 0 R

(1)
12,21 R

(1)
12,22

0 0 0 0 0 0 1+α(ex−1)

1+α(ey−1)
0 0

0 0 0 0 R
(1)
21,11 R

(1)
21,12 0 R

(1)
21,21 R

(1)
21,22

0 0 0 0 R
(1)
22,11 R

(1)
22,12 0 R

(1)
22,21 R

(1)
22,22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

Where the matrix elements R
(1)
ij,lk , which actually depend on x and y, are gathered in a matrix,

which is given by

R(1)(x, y) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1+β(e−y−1)

1+β(e−x−1)
0 0

0
(
1 − 1+β(e−y−1)

1+β(e−x−1)

)
eν12 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (21)

This is nothing else than the R-matrix corresponding to the ASEP with a single species
presented in equation (A.3) in appendix A, with a different parameterization

eyi → 1

1 + β(e−yi − 1)
. (22)

With this notation we can write the commutation rules of the operators A,Bi, Ci and Dij

appearing in T , for different values of the spectral parameters

[A(x),A(y)] = 0; (23)

5
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A(x)B1(y) = ex

eν10(ex − ey)
B1(y)A(x) +

ey

eν10(ey − ex)
B1(x)A(y); (24)

A(x)B2(y) = 1 + α(ex − 1)

eν20α(ex − ey)
B2(y)A(x) +

1 + α(ey − 1)

eν20α(ey − ex)
B2(x)A(y); (25)

Bi(x)Bj (y) = Bl(y)Bk(x)R
(1)
ij,lk(x, y); (26)

D1j (x)Bk(y) = ey

eν10(ey − ex)

(
Bm(y)D1n(x)R

(1)
jk,mn(x, y) − Bj(x)D1k(y)

); (27)

D2j (x)Bk(y) = 1 + α(ey − 1)

eν20α(ey − ex)
(Bm(y)D2n(x)R(1)

jk,mn(x, y) − Bj(x)D2k(y)). (28)

The ansatz for an eigenvector of the transfer matrix, taking into account the non-
commutativity of the Bi s for different i, is given by

|
M1,M2(y1, . . . , yr )〉 =
∑

i1,...,ir



M1,M2
i1,...,ir

Bi1(y1) · · · Bir (yr)‖1〉, (29)

where ‖1〉 is the reference state, defined by

‖1〉 =
⎛
⎝1

0
0

⎞
⎠ ⊗ · · · ⊗

⎛
⎝1

0
0

⎞
⎠ ,

and it is an eigenstate separately of A(x),D11(x) and D22(x)

A(x)‖1〉 = ‖1〉, D11(x)‖1〉 = eNν10(1 − ex)N‖1〉,
D22(x)‖1〉 = (α eν20)N(1 − ex)N‖1〉,

and correspond to a completely empty system. The labels M1,M2 in equation (29) mean that
we require M1B s of type 1 and M2B s of type 2, i.e. we are restricting to the sector with M1

particles of type 1 and M2 particles of type 2.
The eigenvector equation for |
M1,M2(y1, . . . , yr )〉 puts constraints on the yi s. Let us

first apply the operator A(x) to |
M1,M2(y1, . . . , yr )〉. We get a wanted term, i.e. a term
proportional to the vector we start from, of the form

(
ex

eν10

)M1
(

1 + α(ex − 1)

eν20α

)M2 M1+M2∏
i=1

1

(ex − eyi )
|
M1,M2(y1, . . . , yr )〉 (30)

and unwanted terms of the form

1

(eyj − ex)

(
eyj

eν10

)M1
(

1 + α(eyj − 1)

eν20α

)M2 M1+M2∏
i 
=j

1

(eyj − eyi )
B(x) ⊗ B(yj+1) ⊗ · · · ⊗ B(yj−1)

×M(yj , �y)M(yj−1, �y) · · · M(y1, �y)
M1,M2(y1, . . . , yr )‖1〉 (31)

with

M(yj , �y) = R
(1)

i1i2,j1j
′
2
(yj , yj+1)R

(1)

j ′
2i3,j2j

′
3
(yj , yj+2) · · · R(1)

j ′
r−1ir ,jr−1,jr

(yj , yj−1).

The unwanted terms have to cancel with similar terms coming from the action of
D11(x, �y) + D22(x, �y). From the action of Dkk we get a wanted term

ωk(�y)(1 − ex)N
M1+M2∏

i=1

1

(eyi − ex)
B(y1) ⊗ · · · ⊗ B(yM1+M2)T

(1)
kk (x, �y)
M1,M2(y1, . . . , yr )‖1〉,

(32)

6
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with

ω1(�y) = eNν10

M1+M2∏
i=1

(
eyi

eν10

)
, ω2(�y) = eNν20αN

M1+M2∏
i=1

(
1 + α(eyi − 1)

eν20α

)
,

and

T (1)(x, �y) = L(1)
a,aM1+M2

(x, yM1+M2) · · · L(1)
a,a1

(x, y1) (33)

is just the monodromy matrix of TASEP with a single species as explained in appendix A. We
also get an unwanted term

ωk(�y)
(1 − eyj )N

ex − eyj

M1+M2∏
i 
=j

1

(eyi − eyj )
B(x) ⊗ B(yj+1) ⊗ · · · ⊗ B(yj−1)

M(yj , �y)M(yj−1, �y) · · · M(y1, �y)
M1,M2(y1, . . . , yr )T
(1)
kk (yj , �y)
M1,M2(y1, . . . , yr )‖1〉.

In order to get the cancellation of the unwanted terms we first have to diagonalize
ω1(�y)T

(1)
11 + ω2(�y)T

(1)
22 . This is the transfer matrix of a TASEP with a single species and

twisted boundary condition and can be diagonalized by the algebraic Bethe ansatz as in the
case of non-twisted boundary conditions, as done in [20], we briefly recall how it works in
appendix A. Here we simply apply the results explained there. One has only to be careful in
translating the parameters eỹi appearing in the appendix, following equation (22)

eỹi = 1

1 + β(e−yi − 1)
= Yi − 1

bYi − 1
, (34)

where we have defined Yi = 1 − eyi , b = 1 − β, and remember that we consider only the
sector with M2 particles in a system of size Ñ = M1 + M2.

For the auxiliary spectral parameters Zs we get the Bethe equation (A.14) which now
reads(

eν20α

eν10

)N M1+M2∏
i=1

(1 − αYi)(bYi − 1)

(1 − Yi)(bYi − 1 − Zj(Yi − 1))

M2∏
k 
=j

(
−Zj

Zk

)
=

(
α

eν12 eν20

eν10

)M1+M2

.

(35)

While the cancellation of the unwanted terms coming from A and Dkk leads to a second Bethe
equation

(1 − Yj )
M1(1 − αYj )

M2(bYj − 1)M2

eNν10YN
j

∏M1+M2
i=1 (1 − Yi)

=
(

α eν12 eν20

eν10

)M2 M2∏
k=1

(bYj − 1 − Zk(Yj − 1)). (36)

The eigenvalue of the transfer matrix can be read from equations (30, 32) and equation (A.15)

�(x) =
(

ex

eν10

)M1
(

1 + α(ex − 1)

eν20α

)M2 M1+M2∏
i=1

1

(ex − eyi )

+ (1 − ex)N eν12M2ω1(�y)

r∏
i=1

(
1 − exZi

) M1+M2∏
i=1

1

(ex − eyi )
. (37)

Taking the logarithmic derivative in x = 0 we get the eigenvalue of the transition matrix λ

λ = − 1

�(0)

d�(x)

dx

∣∣∣∣
0

= −M1 − αM2 +
M1+M2∑

i=1

1

Yi

. (38)

7
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3. Analysis of the Bethe equations

For convenience of notation, we divide the Ys into two sets, Y (1)
i with i = 1, . . . ,M1, and Y

(α)
i

with i = 1, . . . ,M2. The solution of the Bethe equations wanted behaves in the limit νij → 0
as Y

(1)
i → 1, Y

(α)
i → 1/α and Zk → Z

(0)
k , where Z

(0)
k have to be determined. Actually we will

see that Z
(0)
k s depend on how the limit is taken. For this reason, we will redefine νij → ννij

and take the limit ν → 0 keeping νij fixed. What happens is that the Z
(0)
k s depend on these

νij (or more precisely on their ratios).

From equations (35) and (36) we get
(
eν20M2+ν10M1αM2

∏M1
i=1 Y

(1)
i

∏M2
i=1 Y

(α)
i

)N = 1 and by
continuity

eν20M2+ν10M1αM2

M1∏
i=1

Y
(1)
i

M2∏
i=1

Y
(α)
i = 1 (39)

Let us introduce the following auxiliary variables

C = e(ν12+ν20−ν10)M2+ν10N

M1+M2∏
i=1

(1 − Yi),

K = − eν12(M1+M2)

(α eν20−ν10)N−M1−M2

∏M1+M2
i=1 (1 − Yi)

∏M2
i=1 Zk∏M1+M2

i=1 (1 − αYi)(bYi − 1)
.

(40)

The Bethe equations become

(−Zj)
M2 = K

M1+M2∏
i=1

(bYi − 1 − Zj(Yi − 1)) (41)

(1 − Yj )
M1(1 − αYj )

M2(bYj − 1)M2 = CαM2YN
j

M2∏
k=1

(bYj − 1 − Zk(Yj − 1)). (42)

We note that if we keep K as an unknown, combining equation (39) with equations (41) and
(42) we recover the definition of K given in equation (40). Hence from now on our basic
equations are (39), (41) and (42). Following steps similar to those in [10] we obtain the
following representation for the eigenvalue, which generalizes equations (33) (34) and (36)
of [10]

λ = −
∞∑

n=1

Cn

n

[∮
1

+
∮

1/α

]
dy

2π i

1

y2
[Q(y)]n (43)

where for us

Q(y) = yNαM2
∏M2

k=1(by − 1 − Zk(y − 1))

(1 − αy)M2(by − 1)M2(1 − y)M1
. (44)

Taking the logarithm of equation (39) we get

ν10M1 + ν20M2 = −
∞∑

n=1

Cn

n

[∮
1

+
∮

1/α

]
dy

2π i

1

y
[Q(y)]n, (45)

while equation (41) becomes (after having taken the logarithm)

M2 log(−Zj) = log K + 2iπj + M1 log(b − 1) + M2 log(b/α − 1 − Zj(1/α − 1))

+
∞∑

n=1

Cn

n

[∮
1

+
∮

1/α

]
dy

2π i

b − Zj

by − 1 − Zj(y − 1)
Q(y)n. (46)
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Taking the logarithm of the first equation in (40) we get also the equation

ν10(N − M2) + (ν20 + ν12)M2 = −
∞∑

n=1

Cn

n

[∮
1

+
∮

1/α

]
dy

2π i

1

y − 1
[Q(y)]n. (47)

Now, if we redefine νij → ννij , we see that equations (37), (45)–(47) give in an implicit
form the power expansion in ν of λ. What one should do in principle is to expand log(K) and
Zj in powers of C, use equation (46) and a combination of equations (45) and (47) to derive
the nth-order term of these expansions in terms of lower orders terms, and then work out the
expansion of λ in powers of ν. This way one would find the cumulants of the total number of
particles flown ν10Y

(10) + ν20Y
(20) + ν12Y

(12)

λ(ν) = lim
t→∞

log
〈
eν(ν10Y

(10)+ν20Y
(20)+ν12Y

(12))
〉

t
=

∑
n

〈(ν10Y
(10) + ν20Y

(20) + ν12Y
(12))n〉c

t
νn.

(48)

Concretely this is of course quite laborious and one does not find any illuminating formulae
in general, but one can easily find at least the velocities. Let us work out explicitly the
average of the total velocity of the particles of second type. For this we have to chose
ν10 = 0, ν20 = −ν12 = 1, and the velocity is given simply by the linear term of the expansion
of λ in terms on ν. In the limit ν → 0, the Zj s satisfy a very simple equation

(
Z

(0)
j

)M2 = (−1)(M2)K(0)(b − 1)M1

[
b

α
− 1 − Z

(0)
j

(
1

α
− 1

)]M2

, (49)

whose solution is

Z
(0)
j = (α − b) e

2πij

M2 [K(0)(b − 1)M1 ]1/M2

α − (1 − α) e
2πij

M2 [K(0)(b − 1)M1 ]1/M2

. (50)

Z
(0)
j are now expressed in terms of a single unknown K(0) which is determined taking the first

order in C of the constraint equation (47)[∮
1

+
∮

1/α

]
dy

2π i(y − 1)
Q(0)(y) = 0, (51)

where Q(0) is the value of Q for ν = 0, which is given by

Q(0)(y) = yN

(1 − y)M1

(
αM2

(1 − αy)M2
− K(0) (b − 1)M1+M2

(by − 1)M2

)
. (52)

Then for K(0) we find

K(0) =
[ ∮

1 +
∮

1/α

] dy

2π i
yN αM2

(1−y)M1+1(1−αy)M2[ ∮
1 +

∮
1/α

] dy

2π i
yN (b−1)M1+M2

(1−y)M1+1(by−1)M2

. (53)

Note that, as stated before, the value of K(0), and hence of the ζ
(0)
k s, depends on the choice

of νij . Had we chosen different values for ν10, ν20 and ν12, we would have found a different
value for K(0).

Now we have all the ingredient we need to derive the velocity of the particles of kind 2.
We have simply to consider the linear part of equations (43) and (45)

v2 = lim
ν→0

λ(ν)

ν
= M2

[ ∮
1 +

∮
1/α

] dy

2π i
Q(0)(y)

y2[ ∮
1 +

∮
1/α

] dy

2π i
Q(0)(y)

y

, (54)

9
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which is more conveniently written in terms of the following two auxiliary functions

Fα
N,M1,M2

=
[∮

1
+

∮
1/α

]
dy

2π

yN

(y − 1)M1(αy − 1)M2
, (55)

Fb
N,M1,M2

=
[∮

1
+

∮
1/α

]
dy

2π

yN

(y − 1)M1(1 − by)M2
(56)

(note that the contours of integration are the same for the two integrals)

v2 = M2
Fα

N−2,M1,M2
Fb

N,M1+1,M2
− Fα

N,M1+1,M2
Fb

N−2,M1,M2

Fα
N−1,M1,M2

Fb
N,M1+1,M2

− Fα
N,M1+1,M2

Fb
N−1,M1,M2

. (57)

A check of our formula comes setting α = 1 and b = 0. In such a case we can compute both
Fα and Fb exactly1

Fα=1
N,M1,M2

=
(

N

M1 + M2 − 1

)
, F b=0

N,M1,M2
=

(
N

M1 − 1

)
, (58)

and for the velocity we get

v2 = M2
N − 2M1 − M2

N − 1
. (59)

This result has a quite simple explanation in terms of ASEP with a single species. Indeed,
when α = 1 and b = 0 we can identify particles of species 1 and species 2, then the total
velocity of the particles is well known to be [9]

v1 + v2 = (M1 + M2)(N − M1 − M2)

N − 1
,

on the other hand we could identify particles of species 2 and holes, and deduce easily the
total velocity of particles of type 1

v1 = M1(N − M1)

N − 1
.

Taking the difference of the two formulae above, we recover the expression in equation (59).

4. Large-N limit of the velocity

We want now to consider the limit N → ∞ with nonzero densities of particles of both species
ρ1 = M1/N and ρ2 = M2/N . To find the asymptotic formula for the velocity we have
simply to determine the asymptotic of Fα and Fb, which are easily given by the steepest
descent method. Both integrals have two saddle points which correspond to the solutions of
the equation

1

y
− ρ1

y − 1
− ρ2κ

κy − 1
= 0 (60)

where κ = α for Fα , and κ = b while for Fb. The expression for the saddle points is

y±
κ = κ + 1 − ρ1 − κρ2 ±

√
(κ + 1 − ρ1 − κρ2)2 − 4κ(1 − ρ1 − ρ2)

2κ(1 − ρ1 − ρ2)
. (61)

It is easy to realize that both saddle points are on the real line, one is situated between 1 and
1/κ , the other is situated to the right of 1/κ .

1 As explained in [10] when α = 1 one has to take a single contour integral around 1.

10
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When we compute Fα we can merge the contour around 1 with the one around 1/α and
let the resulting contour pass through y+

α , hence Fα is dominated by the contribution from
y+

α . In computing Fb the integral around 1/α gives no contribution because the integrand is
holomorphic there. The contour integral around 1 can now be deformed only to pass through
y−

b , because of the singularity present in 1/b; hence, Fb is dominated by the contribution
from y−

b .
In conclusion we get, for generic α and b,

v2 = M2

(
1

y+
α

+
1

y−
b

− 1

)
. (62)

By the same procedure, one can find the total velocity of the particles of kind 1

v1 = N

y+
αy−

b

− (N − M1)

(
1

y+
α

+
1

y−
b

− 1

)
. (63)

From equation (61) we see that the non-analyticities of the total velocities (62) and (63) are
located at the zeros of the square root, i.e. at

(α + 1 − ρ1 − αρ2)
2 − 4α(1 − ρ1 − ρ2) = 0 (64)

and at

(b + 1 − ρ1 − bρ2)
2 − 4b(1 − ρ1 − ρ2) = 0. (65)

Equation (64) has solutions:

• for α < 1: ρ2 = 0, ρ1 = 1 − α;
• for α > 1: ρ1 = 0, ρ2 = α−1

α
.

Equation (65) has a solution only for ρ2 = 0 and ρ1 = 1 − b. This means that as long
as the densities of the particles are nonzero, the velocity of the particles is analytic in all its
parameters α, β, ρ1 and ρ2. This result shows that the behavior of the system in the presence
of nonzero densities of particle of each species is quite different from the case dealt with in
[10, 12] where they consider a single particle of type 2, which in the large size limit corresponds
to ρ2 = 0. In that case the velocity is non-analytic in α or β at

α = 1 − ρ1 and β = ρ1. (66)

These non-analyticities are present whenever ρ2 = 0, i.e. whenever we consider a fixed number
of particles of type 2 and let the size of the system go to infinity.

5. Conclusions

In this paper, we have studied an ASEP with two species of particles and different hopping
rates. We have formulated the computation of the cumulants of the currents as an eigenvalue
equation, and we have shown that this leads to an integrable (in the manner of Yang–Baxter)
transition matrix. This has allowed us to employ the formalism of the algebraic Bethe ansatz
to solve the problem, by finding the Bethe equations for an arbitrary number of particles of
each species. The analysis of the Bethe equations gives in principle all the cumulants of the
currents. We found the exact formula for the velocity of the particles of type 2, and computed
its limit when the size of the system goes to infinity, keeping nonzero densities for the particles.
We find this way that, when the densities are different from zero, the total velocity of each
species of particles is analytic in all the parameters. In order to understand better the features

11
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of the system in such a situation one should resort to the matrix product ansatz for determining
for example the density profile of the particles.

Our work can be extended in different directions. First, we think it would be interesting
to use the Bethe equation we found, to compute the spectral gap as a function of the hopping
parameters α and β. We have briefly discussed in the appendices the extension of the problem
to a larger number of species and different hopping rates; it would also be nice to work out the
average velocity of particles of a given type as functions of the hopping parameters. Another
interesting possibility is to consider the problem on a lattice with open ends and letting particles
flow in and out of the system. We plan to come back to these issues soon.
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Appendix A. Algebraic Bethe ansatz for the ASEP with one species

Let us consider the ASEP consisting of m particles and r holes on a ring of size Ñ = p + r .
Each particle can jump into a neighbor site only if the site is empty. The probability for
jumping forward is q · dt , while the probability for jumping backward is p · dt . Following [9]
we consider the total distance covered by all the particles in a time t, denoted by Yt . In order
to determine the behavior of Yt we look at the joint probability Pt(C, Y ) of being at time t in
a configuration C and having all the particles covered a total distance Yt = Y . The generating
function

Ft(C) =
∞∑

Y=0

eν12Y Pt (C, Y ),

which satisfies the following evolution equation

d

dt
Ft (C) =

∑
C′

[M0(C, C′) + eν12M1(C, C′) + e−ν12M−1(C, C′)]Ft(C′), (A.1)

where M1(C, C′) dt is the transition probability for going from the configuration C′ to the
configuration C and moving a particle forward of one step, while M−1(C, C′) dt correspond
to a particle moving backward of one step and M0 is the diagonal part. The large time
behavior of 〈eν12Yt 〉 is determined by the largest eigenvalue λ(ν12) of the matrix transition
matrix M0(C, C′) + eν12M1(C, C′) + e−ν12M−1(C, C′).

The transition matrix M0(C, C′) + eν12M1(C, C′) + e−ν12M−1(C, C′) can be diagonalized by
means of the algebraic Bethe ansatz [19, 20]. In our case, we are led to consider

Ra,b(x, y) = 1 + λ(x, y)E (A.2)

where

λ(x, y) = e
x−y

2 − e
y−x

2

p e
x−y

2 − q e
y−x

2

.

12
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The matrix Ra,b(x, y) acts on Va ⊗ Vb → Va ⊗ Vb, where V = C
2, and in the basis

(|0〉, |1〉)a ⊗ (|0〉, |1〉)b the matrix E reads

E =

⎛
⎜⎜⎝

0 0 0 0
0 −q p e−ν12 0
0 q eν12 −p 0
0 0 0 0

⎞
⎟⎟⎠ . (A.3)

We define the matrices La,ai
(x, yi) = Pa,ai

Ra,ai
(x, yi), where Pa,b is the permutation operator.

We introduce also a matrix  which acts only on the auxiliary space, in a diagonal way

(�y) =
(

ω1(�y) 0
0 ω2(�y)

)

and its entries can depend on some auxiliary parameters �y. The reason for considering such
a generalization of the problem we started from, which in facts correspond to  equal to the
identity, comes from the ASEP with two species, as seen in the text. For a system of size Ñ

the monodromy matrix is constructed by means of La,ai
(x, ỹi)

2

Ta⊗H (x, �̃y) = La,aÑ
(x, ỹÑ ) · · · La,a1(x, ỹ1).

The transfer matrix is given by

T (x, �y, �̃y) = tra[(�y)Ta⊗H (�̃y)].

The fact that [(�y)⊗(�y), R(x, x ′)] = 0, combined with the Yang–Baxter equation, implies
that the transfer matrices with different parameters x and x ′ commute among themselves. The
transition matrix of the ASEP is obtained as the logarithmic derivative of the transfer matrix
in zero (at  = Id and yi = 0).

Let us write the monodromy matrix in the auxiliary space as

T (x, �̃y) =
(

A(x, �̃y) B(x, �̃y)

C(x, �̃y) D(x, �̃y)

)
, (A.4)

the algebraic Bethe ansatz proceeds by constructing an eigenvector acting with B(ζi, �̃y)

on a reference state. Our reference state is |1〉 = (1
0

) ⊗ · · · ⊗ (1
0

)
corresponding to the

completely full system, which is an eigenvector of the transfer matrix. Indeed we note that
A(x, �̃y)|1〉 = |1〉,D(x, �̃y)|1〉 = ∏Ñ

k=1

(
pλ(x,ỹk)

eν12

)|1〉, C(x, �̃y)|1〉 = 0. Hence the eigenvalue

of|1〉 is ω1(�y)A(x, �̃y) + ω2(�y)D(x, �̃y) = ω1(�y) + ω2(�y)
∏Ñ

k=1 (pλ(x, ỹk)) . We search now for
eigenvectors of the form

|(ζ1, . . . , ζr )〉 = B(ζ1) · · · B(ζr)|1〉 (A.5)

and use the Yang–Baxter algebra, satisfied by the operators A(x), B(x), C(x),D(x) as a
consequence of the Yang–Baxter equation:

[A(x),A(y)] = 0, (A.6)

A(x)B(z) = eν12

pλ(z, x)
B(z)A(x) − eν12(1 − pλ(z, x))

pλ(z, x)
B(x)A(z) (A.7)

B(z)B(x) = B(x)B(z) (A.8)

D(x)B(z) = eν12

pλ(x, z)
B(z)D(x) − eν12(1 − qλ(x, z))

pλ(x, z)
B(x)D(z). (A.9)

2 Note that ys and ỹ can and will be in general different quantities.
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The requirement |(ζ1, . . . , ζr )〉 to be an eigenvector can be expressed in terms of a Bethe
equation

ω2(�y)

ω1(�y)

∏
i 
=j

(
λ(ζi, ζj )

λ(ζj , ζi)

) Ñ∏
k=1

(pλ(ζj , ỹk)) = eν12Ñ , (A.10)

which fixes the values of �ζ . The eigenvalue of the transfer matrix is given by

�(x) = ω1(�y)

r∏
i=1

(
eν12

pλ(ζi, x)

)
+ ω2(�y)

r∏
i=1

(
eν12

pλ(x, ζi)

) Ñ∏
k=1

(
pλ(x, ỹk)

eν12

)
. (A.11)

We consider now the limit p → 0, q = 1. In order to do that without getting a singular
limit, we have to change the spectral parameters into ζi → ζi − log(p)

2 . Then the Bethe
equations turn into the form

ω2(�y)

ω1(�y)

∏
i 
=j

(
−p e(ζj −ζi )/2 − q e(ζi−ζj )/2

p e(ζi−ζj )/2 − q e(ζj −ζi )/2

) Ñ∏
k=1

(
e(ζj −ỹk )/2 − p e(ỹk−ζj )/2

e(ζj −ỹk )/2 − q e(ỹk−ζj )/2

)
= eν12Ñ (A.12)

and for p → 0 and q = 1 we get

ω2(�y)

ω1(�y)

∏
i 
=j

(−eζi−ζj )

Ñ∏
k=1

(
e−ỹk

e−ỹk − e−ζj

)
= eν12Ñ . (A.13)

Defining Zj = e−ζj we arrive at

ω2(�y)

ω1(�y)

∏
i 
=j

(
−Zj

Zi

) Ñ∏
k=1

(
e−ỹk

e−ỹk − Zj

)
= eν12Ñ (A.14)

and the eigenvalue can be simply written as

�(x) = eν12rω1(�y)

r∏
i=1

(1 − exZi). (A.15)

Appendix B. Yang–Baxter equation for multi-species ASEP with different rates

In this appendix, we want to discuss to what extent the Baxterized form of the R-matrix (12)
can be generalized, in order to describe a process with a number of species greater than 3, and
a hierarchical structure. Labeling the species with numbers from 1 to n, the hierarchy means
that a particle of kind i can hop to the right of a particle of kind j only if i < j . It is well
known that if all these elementary processes happen with the same rate, then the R-matrix is
simply given by the Baxterization of the Hecke algebra [18]. What we want to consider here is
the case when the hoppings among the particles depend on the species involved in the hopping

ij → ji with rate aij if i < j.

Writing the matrix describing the hopping ij → ji as E
(ij)

αβ,γ σ = δαiδβj (eνij δασ δβγ −
δαγ δβσ ), we would like to find an R-matrix of the form

R(x, y) = 1 +
∑
{ij}

gij (x, y)E(ij), (B.1)

which satisfies the Yang–Baxter equation

Ra,b(y, z)Rb,c(x, z)Ra,b(x, y) = Rb,c(x, y)Ra,b(x, z)Rb,c(y, z), (B.2)

14
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and such that
d

dx
R(x, y)

∣∣∣∣
x=y=0

=
∑
{ij}

aijE
(ij). (B.3)

Let us define for i < j < k the projectors Pi,j and Pi,j,k , which act on C
n ⊗ C

n ⊗ C
n. Pi,j

projects on the states occupied only by particles of type i and j , while Pi,j,k projects on states
occupied only by particles i, j and k. If we intertwine equation (B.2) with Pi,j we see that we
reduce to the problem with two types of particles (or equivalently one type of particles and the
empty sites), and we recover easily that gij must be of the form

gi,j (x, y) = 1 − fi,j (x)

fi,j (y)
. (B.4)

If we intertwine equation (B.2) with Pi,j,k we recover the problem with three types of particles
treated in the main body of this paper, and the Yang–Baxter equation implies that

fi,k(x) = fi,j (x) + b
i,j

i,k ; f −1
j,k (x) = f −1

i,k (x) + b
i,k
j,k. (B.5)

This means that all the functions fi,j (x) are determined in terms of a reference one, which we
chose to be f1,2(x), and of the parameters b

i,j

i,k and b
i,k
j,k . Actually the relations in (B.5) put also

constraints on the bs. Indeed it is easy to see that we must have

b
i,j

i,k =
k−1∑
l=j

b
i,l
i,l+1; b

i,k
j,k =

j−1∑
l=i

b
l,k
l+1,k.

Moreover if i > 1 one can get fi,j+1(x) starting from fi,j (x) in two different ways:

fi,j → fi,j+1 or fi,j → fi−1,j → fi−1,j+1 → fi,j+1.

The previous relation fixes

b
i−1,j+1
i,j+1 = b

i−1,j

i,j

1 − b
i−1,j

i−1,j+1b
i−1,j

i,j

and b
i,j

i,j+1 = b
i−1,j

i−1,j+1

1 − b
i−1,j

i−1,j+1b
i−1,j

i,j

.

In conclusion we can chose as free parameters b
1,j

1,j+1 and b
l−2,l
l−1,l , which in a problem with

n species are in number of 2(n − 1). Hence among the n(n − 1)/2 rates aij , only 2(n − 1)

are independent, given the form of the R-matrix (B.1). This of course does not rule out the
possibility that the problem with generic rates is integrable, but one should look for a more
general R-matrix to prove it.
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